

THE DIFFIE-HELLMAN PROTOCOL IS WEAK FOR FERMAT PRIMES

SECRET-KEY CRYPTOGRAPHY

In a secret-key cryptosystem (or symmetric) the keys used in the encryption function and decryption function can be derived from each other.

EXAMPLES:

- Data Encryption Standard
- Caesar's cipher

PUBLIC-KEY CRYPTOGRAPHY

In a public-key cryptosystem (or asymmetric) there are two keys:

- a public key, to encrypt data
- a secret key, to decrypt data

THE DOUBLE PADLOCK PROTOCOL

- In 1976 the paper "New Directions in Cryptography" (Diffie W., Hellman M.) about public key cryptography was published
- In 1978 the paper "An Improved Algorithm for Computing
 Logarithms over GF(p) and its Cryptographic Significance"
 (Pohlig S., Hellman M.) was published

CYCLIC GROUP

A **group** is a set **G** together with a binary operation which satisfies four requirements: *closure*, *associativity*, *identity element* and *inverse element*.

A cyclic group is a group generated by a single element, called *group generator*.

DIFFIE-HELLMAN KEY EXCHANGE

Alice and Bob choose a group **G** of order *n* and a generator *a*.

- Alice chooses a random $a \in \{0, \dots, n-1\}$ and sends g^a to Bob
- \bullet Bob chooses a random $b \in \{0, \dots, n-1\}$ and sends g^b to Alice
- ullet Alice and Bob can calculate the common value g^{ab}

THE DISCRETE LOGARITHM

The discrete logarithm of x to the base g is the smallest positive integer a such that $x = g^a$. Thus $log_g(x) = a$.

THE DIFFIE-HELLMAN PROBLEM

The *Diffie-Hellman problem* in a cyclic group **G** with generator **g** is to find $\mathbf{z} = g^{ab}$, given $\mathbf{x} = g^a$ and $\mathbf{y} = g^b$.

If an eavesdropper can solve the discrete logarithm problem, then he or she can solve the Diffie-Hellman problem.

In a cyclic group G of order n with generator g, the discrete logarithm problem of an element x to the base g can be solved by using less than n group operations.

So a requirement for the Diffie-Hellman key exchange is that n must be big.

POHLIG-HELLMAN: PREREQUISITES

Any cyclic group **G** of order n is isomorphic to \mathbb{Z}_n^+ . To compute the discrete logarithm to the base g is equivalent to compute the isomorphism $\lambda:G\to\mathbb{Z}_n^+$ such that $\lambda(g)=1_n$

• $n=n_1n_2$, n_1 and n_2 coprime. Let $H_1=\{x^{n_2}|x\in G\}$ and $H_2=\{x^{n_1}|x\in G\}$ be two subgroups of ${\bf G}$ of order n_1 and n_2 . Define the group homomorphisms

$$\pi_i: G \to H_i, \pi_1(x) = x^{n_2}, \pi_2(x) = x^{n_1}$$

Then $\pi:G\to H_1\times H_2, \pi(x)=(\pi_1(x),\pi_2(x))$ is a group isomorphism

The diagram is commutative

POHLIG-HELLMAN: PART ONE

Let **G** be a cyclic group of order $n=n_1n_2$, n_1 and n_2 coprime. Let H_1 and H_2 be the subgroups of order n_1 and n_2 . The discrete logarithm of a group element \mathbf{x} can be computed **as fast as** the discrete logarithm of one element in the subgroup H_1 and one element in the subgroup H_2 .

This result can be generalized to $n = \prod_{i=1}^{n} p_i^{r_i}$

So another requirement for the Diffie-Hellman key exchange is that the largest prime tower dividing the order of G must be big.

POHLIG-HELLMAN: PART TWO

Let **G** be a cyclic group of order $n = p^r$, p prime. The discrete logarithm of an element x can be computed **as fast** as r discrete logarithms in the subgroup of order p.

The last requirement for the Diffie-Hellman key exchange is that the largest prime dividing the order of G must be big.

HOW DOES POHLIG-HELLMAN ALGORITHM WORK?

$$y=g^x\pmod p$$
 , $arphi(p)=p-1=\prod_{i=1}^l p_i^{r_i}$ $x\pmod {p_1^{r_1}},\ldots,x\pmod {p_l^{r_l}}$ \mathcal{CRT} $x\pmod {arphi(p)}$

$$x_i = x \pmod{p_i^{r_i}}$$

$$x_i = \sum_{j=0}^{r_i-1} c_j p_i^j, \ c_j \in \{0, \dots, p-1\} \forall c_j$$

$$y^{\frac{(p-1)}{p_i}} = g^{\frac{c_0(p-1)}{p_i}} \pmod{p}$$

$$y^{\frac{(p-1)}{p_i}} = g^{\frac{c_0(p-1)}{p_i}} \pmod{p}$$

$$y^{\frac{(p-1)}{p_i}} = g^{\frac{c_j(p-1)}{p_i}} \pmod{p}$$

$$y^{\frac{(p-1)}{p_i}}_j = g^{\frac{c_j(p-1)}{p_i}} \pmod{p}$$

CHINESE REMAINDER THEOREM

Let p_1, \ldots, p_r be pairwise coprime. Then the system of congruences

$$x = c_i \pmod{p_i} \text{ for } i \in \{1, \dots, r\}$$

has a **unique** solution $x\pmod p$, where $p=\prod_{i=1}^n p_i$

SAFE PRIME

A **safe prime** is a prime of the form **2p+1**, where **p** is a prime.

A cyclic group of order **n** = **2p+1**, where **n** and **p** are "big enough" primes, is a suitable group for the Diffie-Hellman protocol.

FERMAT NUMBER

A Fermat number is a number of the form $F_n = 2^{2^n} + 1$.

Even if F_n is a prime, it is **not** a safe prime, so the multiplicative group of integers mod F_n is **not** a satisfactory group for Diffie-Hellman key exchange.

17 -
$$\mathbb{F}_2 = 2^{2^2} + 1$$

$$8 = 3^x \pmod{17}$$
, $x = \sum_{i=0}^{x} c_i 2^i$, $c_i \in \{0, 1\}$

- $8^{2^3} = 1 = 3^{c_0 2^3} \pmod{17} \to c_0 = 0$
- $8^{2^2} = 16 = 3^{c_1 2^3} \pmod{17} \to c_1 = 1$
- $16^2 = 1 = 3^{c_2 2^3} \pmod{17} \to c_2 = 0$
- $16 = 3^{c_3 2^3} \pmod{17} \to c_3 = 1$

BIBLIOGRAPHY

